Cellular and Molecular Mechanisms Underlying Congenital Myopathy-related Weakness
نویسنده
چکیده
Lindqvist, J. 2014. Cellular and Molecular Mechanisms Underlying Congenital Myopathy-related Weakness. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Medicine 977. 45 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-8894-9. Congenital myopathies are a rare and heterogeneous group of diseases. They are primarily characterised by skeletal muscle weakness and disease-specific pathological features. They harshly limit ordinary life and in severe cases, these myopathies are associated with early death of the affected individuals. The congenital myopathies investigated in this thesis are nemaline myopathy and myofibrillar myopathy. These diseases are usually caused by missense mutations in genes encoding myofibrillar proteins, but the exact mechanisms by which the point mutations in these proteins cause the overall weakness remain mysterious. Hence, in this thesis two different nemaline myopathy-causing actin mutations and one myofibrillar myopathy-causing myosin-mutation found in both human patients and mouse models were used to investigate the cascades of molecular and cellular events leading to weakness. I performed a broad range of functional and structural experiments including skinned muscle fibre mechanics, small-angle X-ray scattering as well as immunoblotting and histochemical techniques. Interestingly, according to my results, point mutations in myosin and actin differently modify myosin binding to actin, cross-bridge formation and muscle fibre force production revealing divergent mechanisms, that is, gain versus loss of function (papers I, II and IV). In addition, one point mutation in actin appears to have muscle-specific effects. The presence of that mutant protein in respiratory muscles, i.e. diaphragm, has indeed more damaging consequences on myofibrillar structure than in limb muscles complexifying the pathophysiological mechanisms (paper II). As numerous atrophic muscle fibres can be seen in congenital myopathies, I also considered this phenomenon as a contributing factor to weakness and characterised the underlying causes in presence of one actin mutation. My results highlighted a direct muscle-specific up-regulation of the ubiquitin-proteasome system (paper III). All together, my research work demonstrates that mutationand muscle-specific mechanisms trigger the muscle weakness in congenital myopathies. This gives important insights into the pathophysiology of congenital myopathies and will undoubtedly help in designing future therapies.
منابع مشابه
HACD1, a regulator of membrane composition and fluidity, promotes myoblast fusion and skeletal muscle growth
The reduced diameter of skeletal myofibres is a hallmark of several congenital myopathies, yet the underlying cellular and molecular mechanisms remain elusive. In this study, we investigate the role of HACD1/PTPLA, which is involved in the elongation of the very long chain fatty acids, in muscle fibre formation. In humans and dogs, HACD1 deficiency leads to a congenital myopathy with fibre size...
متن کاملChanges in cross-bridge cycling underlie muscle weakness in patients with tropomyosin 3-based myopathy.
Nemaline myopathy, the most common non-dystrophic congenital myopathy, is caused by mutations in six genes, all of which encode thin-filament proteins, including NEB (nebulin) and TPM3 (α tropomyosin). In contrast to the mechanisms underlying weakness in NEB-based myopathy, which are related to loss of thin-filament functions normally exerted by nebulin, the pathogenesis of muscle weakness in p...
متن کاملCongenital myopathies.
This review focuses on congenital myopathies, a distinct but markedly heterogeneous group of muscle disorders that present with muscle weakness and typically appear at birth or in infancy. These myopathies have characteristic histopathologic abnormalities on muscle biopsy, allowing a preliminary morphologic classification. Advances in molecular genetics have allowed a more rational classificati...
متن کاملCentral core disease
Central core disease (CCD) is an inherited neuromuscular disorder characterised by central cores on muscle biopsy and clinical features of a congenital myopathy. Prevalence is unknown but the condition is probably more common than other congenital myopathies. CCD typically presents in infancy with hypotonia and motor developmental delay and is characterized by predominantly proximal weakness pr...
متن کاملSarcomere Dysfunction in Nemaline Myopathy
Nemaline myopathy (NM) is among the most common non-dystrophic congenital myopathies (incidence 1:50.000). Hallmark features of NM are skeletal muscle weakness and the presence of nemaline bodies in the muscle fiber. The clinical phenotype of NM patients is quite diverse, ranging from neonatal death to normal lifespan with almost normal motor function. As the respiratory muscles are involved as...
متن کامل